A constitutive formulation of arterial mechanics including vascular smooth muscle tone.
نویسندگان
چکیده
A pseudo-strain energy function (pseudo-SEF) describing the biomechanical properties of large conduit arteries under the influence of vascular smooth muscle (VSM) tone is proposed. In contrast to previous models that include the effects of smooth muscle contraction through generation of an active stress, in this study we consider the vascular muscle as a structural element whose contribution to load bearing is modulated by the contraction. This novel pseudo-SEF models not only arterial mechanics at maximal VSM contraction but also the myogenic contraction of the VSM in response to local increases in stretch. The proposed pseudo-SEF was verified with experimentally obtained pressure-radius curves and zero-stress state configurations from rat carotid arteries displaying distinct differences in VSM tone: arteries from normotensive rats displaying minimal VSM tone and arteries from hypertensive rats exhibiting significant VSM tone. The pressure-radius curves were measured in three different VSM states: fully relaxed, maximally contracted, and normal VSM tone. The model fitted the experimental data very well (r2 > 0.99) in both the normo- and hypertensive groups for all three states of VSM activation. The pseudo-SEF was used to illustrate the localized reduction of circumferential stress in the arterial wall due to normal VSM tone, suggesting that the proposed pseudo-SEF can be of general utility for describing stress distribution not only under passive VSM conditions, as most SEFs proposed so far, but also under physiological and pathological conditions with varying levels of VSM tone.
منابع مشابه
Origin of axial prestretch and residual stress in arteries.
The structural protein elastin endows large arteries with unique biological functionality and mechanical integrity, hence its disorganization, fragmentation, or degradation can have important consequences on the progression and treatment of vascular diseases. There is, therefore, a need in arterial mechanics to move from materially uniform, phenomenological, constitutive relations for the wall ...
متن کاملThe differential effects of oestrogens and progestins on vascular tone.
The purpose of this paper is to present reported findings of the effects of ovarian steroids on vascular tone. The medical literature was reviewed for relevant contributions. Oestrogen replacement therapy in postmenopausal women is associated with a reduction in mortality from coronary artery disease. Many different cellular actions have been described which help explain the cardioprotective ef...
متن کاملA method for three-dimensional quantification of vascular smooth muscle orientation: application in viable murine carotid arteries
When studying in vivo arterial mechanical behaviour using constitutive models, smooth muscle cells (SMCs) should be considered, while they play an important role in regulating arterial vessel tone. Current constitutive models assume a strictly circumferential SMC orientation, without any dispersion. We hypothesised that SMC orientation would show considerable dispersion in three dimensions and ...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملNeurogenic mechanisms contribute to hypertension in mice with disruption of the K-Cl cotransporter KCC3.
The neurodegenerative disorder Andermann syndrome is caused by mutations of the K-Cl cotransporter KCC3. Mice with a targeted disruption of the corresponding gene, Slc12a6, reproduce neurodegeneration of the peripheral and central nervous system (CNS) and display arterial hypertension. Kcc3 is expressed in numerous tissues, including the CNS and vascular smooth muscle cells. As the intracellula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 3 شماره
صفحات -
تاریخ انتشار 2004